
AI 時代的軟體工程

從 Vibe Coding 到 Vibe Engineering
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時程

時間 內容

9:00-9:30 自我介紹 + 環境安裝

9:30-10:30 AI 未來 + 原則

10:30-12:00 Live Demo：數位勞報單系統

13:00-14:00 產品思維 + 發想

14:00-15:30 實作：旅遊規劃網站

15:30-18:00 分享 + Feedback + Q&A
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環境安裝

請確認以下工具已安裝：

# Docker
docker --version

# Node.js (v18+)
node --version

# Claude Code
claude --version
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安裝指引

Docker Desktop

https://www.docker.com/products/docker-desktop

Node.js

https://nodejs.org/

Claude Code

npm install -g @anthropic-ai/claude-code
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VS Code 擴充套件

建議安裝：

Marp for VS Code — 預覽簡報

ESLint — 程式碼檢查

Prettier — 格式化

Tailwind CSS IntelliSense
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我是誰

葉又銘

台大資工碩一｜App & AI & Agent 開發、研究
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我在做什麼

實驗室在幫助上市櫃公司建立 AI Code Review Workflow

經營 Kardomo — K-pop 社群平台（2 個月開發上線），目前 25k 用戶

創辦 Peeps — Gen Z 社交 App（1 週獲得 10K 用戶）

大量接案、AI 開發陪跑

（以上都在去年上半年）

7



App 獨立開發者、接案仔

同時經營多個專案（已上線五個有賺錢的 App）

全端 + 產品 + 設計 + 維運

一個人怎麼做到的？
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我與哥布林

接案時發現的問題：

步調太慢，無法快速迭代

技術老舊，包袱過重

AI 尚未完全導入

部署手動成分過高

上一個案子拖了好幾個月...
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我的觀察

系統全包給我一個月就能做完一個可以賣錢的產品

我遇過的所有資訊系統廠卻都要安排前端、後端、UIUX、PM 才能完成...

差別在哪？
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今天的目標

1. 理解 AI 開發工具的演進與瓶頸

2. 學會用 Claude Code 高效開發

3. 建立正確的工程與產品思維

4. 親手做出一個可上線的產品

5. 培養未來時代的思維 Mindset
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準備好了嗎？

裝好的請舉手

有問題的請舉手
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讓我們開始

The Future of AI

AI 開發工具的演進與瓶頸
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AI 開發工具演進
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你用過什麼工具？經驗是什麼？
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2024：自動補全

GitHub Copilot 時代

Inline suggestions

一次補一行、一個函數

你還是要寫大部分的 code

一個工程師的效率可以提升個 1.1 倍
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2025：一個檔案

Cursor / Windsurf

Composer 模式

可以改整個檔案

Chat in editor

但還是一次處理一個檔案

一個工程師的效率可以提升個 1.5 倍

UIUX、PM 可以加入協作
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2026：多個檔案

Claude Code / Codex

Terminal-first、Agentic coding

200K token context window

跨檔案重構

可以執行 shell commands

SWE-bench 80.9%（Opus 4.5）

可以完成一或多個 Junior SWE 的工作量（根據操作者能力）
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2027：架構 + 設計 + QA

我的預測

Spec-driven development

AI 做架構設計

AI 做 QA（自動測試、自動驗證）

Background agents — Fire and forget

Overnight PR

Junior、IT 可以正式取代 Senior SWE 的工作
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演進的關鍵

年份 能力 範圍

2024 補全 一行

2025 編輯 一個檔案

2026 重構 多個檔案

2027 工程 整個專案
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為什麼會這樣演進？可以觀察到什麼？

為什麼哪些做得好？哪些做不好？
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目前所謂的「AI」有瓶頸
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你認為 AI 是什麼？你怎麼定義？
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這次工作坊我的定義

AI = 超強的文字接龍機器

根據前文預測下一段文字

不是「思考」，是「預測」

沒有真正的理解，只有模式匹配

但這已經夠強了
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瓶頸 1：長期思維

AI 只看當下的 context

不知道你昨天做了什麼

不知道你下週要做什麼

沒有長期記憶

為什麼？
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瓶頸 2：視覺能力

AI 看不懂 UI/UX

不知道設計好不好看

不知道使用者體驗如何

需要人類判斷

為什麼？
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瓶頸 3：自我學習

AI 不會從錯誤中學習

每次對話都是全新開始

重複的錯誤會一直犯

你要幫它學（CLAUDE.md）

為什麼？
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瓶頸 4：刪減能力

AI 很會加東西

但不太會刪東西

Over-engineering 傾向

需要人類簡化

為什麼？
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瓶頸 5：Bias

訓練資料的偏見

過時的 best practices

獎勵機制導致的行為

需要人類校正

為什麼？
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為什麼有這些瓶頸？

1. 訓練的獎勵機制 — 目前仍然在解決急迫的問題，還沒有為長期思維做優化，加上現

在訓練多不依靠資料，而是依靠人類反饋（RLHF）

2. 訓練資料 — 過時、有偏見、不完整（其實很多 AI 現在想做到的事，網路上根本沒

這種資料，e.g. QA、Reasoning、Tool Calling、Multi-step...）

3. 架構限制 — Context window、無狀態，以語言為載體而非在神經中的知識
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Questions so far?
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Agents
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什麼是 Agent？
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Agent vs AI

傳統 AI：生成文字

Agent：Write code → Call tools → Execute → Loop
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現在 AI （LLM）到底怎麼運作

其實在模型看到的是長這樣：

System: You are a helpful assistant.
User: Please write a function that adds two numbers.
Assistant: Here is a Python function that adds two numbers:
def add(a, b):
    return a + b
User: Now, please save this function to a file named add.py.
Assistant: （這裏 LLM 會根據前面的文字預測下一段文字）

是在「文字接龍」，不是在「思考並回答」。
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問：為什麼 AI 現在可以調用工具、生成圖片？猜一下
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Agent 的能力

接收指令
    ↓
分析任務
    ↓
呼叫工具（讀檔、寫檔、執行指令）

    ↓
檢查結果
    ↓
決定下一步
    ↓
重複直到完成

跟 RAG 沒有任何關係
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問：為什麼 2025 是 Agent 的元年？
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Claude Code 就是一個 Agent

讀寫檔案

執行 shell commands

搜尋 codebase

呼叫 MCP tools

自主決定下一步
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Context Engineering

Tobi Lütke (Shopify CEO), 2025

從 Prompt Engineering → Context Engineering
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Context Engineering 是什麼？

不只是寫好的 prompt

而是管理 AI 能看到的所有資訊

System prompts

Tools / MCP

Message history

Retrieved data (RAG)

Memory
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為什麼重要？

"The art of providing all the context for the task to be plausibly solvable by

the LLM"

AI 的能力 = 模型能力 × Context 品質
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實作：MCP (Model Context Protocol)

讓 AI 能夠連接外部工具和資料
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推薦 MCP Servers

MCP 功能

Context7 即時取得最新文件（Next.js、React...）

shadcn 查詢 shadcn/ui 元件、範例

Next.js DevTools Next.js 開發工具、錯誤偵測

Playwright 瀏覽器自動化測試

Supabase 資料庫操作、Schema 管理
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Context7 MCP

解決 AI 文件過時問題

claude mcp add context7 -- npx -y @anthropic/context7-mcp

使用方式：prompt 加上 use context7

"Create a Server Component using Next.js 15 - use context7"
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shadcn MCP

直接查詢元件 registry

claude mcp add shadcn -- npx -y shadcn-ui-mcp-server

取得正確的 props

查看使用範例

自然語言安裝元件
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Next.js DevTools MCP

claude mcp add next-devtools npx next-devtools-mcp@latest

錯誤偵測

Live state 查詢

開發 logs

升級指南
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Playwright MCP

瀏覽器自動化

claude mcp add playwright -- npx -y @anthropic/playwright-mcp

E2E 測試

截圖

無需視覺模型
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Claude Code 進階功能
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Hooks：事件自動化

在特定時機自動執行腳本

SessionStart  → 注入 git status、TODO
PreToolUse    → 阻擋危險命令
PostToolUse   → 自動格式化程式碼
Stop          → 強制完成檢查
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Hooks 範例：自動格式化

{
  "hooks": {
    "PostToolUse": [{
      "matcher": "Write|Edit",
      "hooks": [{
        "type": "command",
        "command": "npx prettier --write $FILE"
      }]
    }]
  }
}

每次寫檔案後自動跑 Prettier
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Hooks 範例：自動批准測試

{
  "hooks": {
    "PermissionRequest": [{
      "matcher": "Bash(npm test*)",
      "hooks": [{
        "type": "command",
        "command": "echo '{\"decision\": \"allow\"}'"
      }]
    }]
  }
}

測試命令不用每次確認
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LSP：語言伺服器協定

讓 Claude 有 IDE 等級的程式碼理解

功能 沒有 LSP 有 LSP

找函數定義 grep 搜尋（45s） 直接跳轉（50ms）

找所有引用 猜測 精確列出

型別資訊 讀完整個檔案 即時顯示

效能提升 900 倍
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LSP 啟用

# 啟用 LSP 功能
ENABLE_LSP_TOOLS=1 claude

# 安裝語言 Plugin
/plugin marketplace add boostvolt/claude-code-lsps
/plugin install pyright@claude-code-lsps

支援：Python、TypeScript、Go、Rust、Java...
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Plugins：擴充系統

打包 Commands + Agents + Skills + Hooks + MCP

# 安裝 Plugin
/plugin install code-review@anthropics/claude-code

# 列出已安裝
/plugin list
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官方 Plugins

Plugin 功能

code-review 5 個並行 Agent 做程式碼審查

commit-commands /commit 、 /commit-push-pr

feature-dev 7 階段功能開發流程

security-guidance 偵測安全漏洞
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Plugins Marketplace

# 新增 Marketplace
/plugin marketplace add anthropics/claude-code
/plugin marketplace add claudebase/marketplace

# 搜尋 Plugin
/plugin search review

# 安裝
/plugin install code-review@anthropics/claude-code
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Commands vs Skills vs Hooks vs Plugins

類型 觸發方式 用途

Commands /command  手動 重複的 workflow

Skills AI 自動判斷 情境規則

Hooks 系統事件自動 事件驅動自動化

Plugins 打包上述全部 分享與分發
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MCP 設定檔位置

# macOS
~/Library/Application Support/Claude/claude_desktop_config.json

# 或用 CLI
claude mcp add <name> -- <command>
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Vibe Coding vs Vibe Engineering

60



Vibe Coding

Andrej Karpathy, 2025/2

完全交給 AI

不看 code

用執行結果判斷對錯

快速原型
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Vibe Coding 的問題

19% AI 生成的 code 有安全問題

不理解就無法維護

"Development hell"

技術債爆炸

我們稱為屎山代碼
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Vibe Engineering

Simon Willison

用 AI 加速

但對產出負責

審查每一行 code

理解架構
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問：AI 寫 Code 到底意味著什麼

A：取代工程師？

B：加速工程師？

C：改變工程師的工作方式？
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我的觀點

軟體開發是工程問題

不是創造、不是生成

是蓋房子

軟體資訊是工程問題不是發明東西
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蓋房子的邏輯

1. 基建要先蓋好

2. 每蓋完一小區塊就要檢查

3. 有問題馬上修

4. 才能往上蓋
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你是工頭

AI 是你的工人

你要：

規劃藍圖

分配任務

檢查成果

確保品質

你需要有長期思維、解決問題的能力、制定策略、標準、流程
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Questions so far?
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接下來：這個時代，你如何比別人強？

如何比別人強

這個時代的生存法則
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問：你覺得呢？
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核心：時間與速度

做產品就是在拼速度

拼不過別人就不用玩了

71



技術不是護城河、資本才是（但跟你也沒關係）
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什麼重要？
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了解技術 > 追隨潮流

思考新技術的存在意義、原因

暫停、思考

穩定 > 新穎

提醒：軟體是工程問題。
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模型 >>> 工具

換一個更好的模型 → 立刻提升，真的有效

換一個更好的工具 → 學習成本，而且大多數時候沒用

遇到 Bug 大多數時候換一個模型就可以解決（Bias 問題）

舉例：

1. Claude Code 好處是模型便宜，對開發者友善

2. Cursor UI 好看還可切換模型

跟他們自家 Agent 能力沒有任何關係

選對模型比選對工具重要 10 倍
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問：Gemini vs GPT vs Claude？
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速度 > 技術

開發產品要思考的是「怎麼最快做出來」

也許最新技術可以、也許不行，沒有答案

你要思考「你要做到什麼程度」、「怎麼最快做到」

討論：Saas vs Blog
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偷前人的程式、貼網路資源

不要重造輪子

找現成的解法

複製、修改、ship

AI 的缺陷就是他現在的腦子已經固定了，有些任務就是做不好，給他翻書吧。

Open source 的意義

以 Shadcn、Supabase 為例。
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什麼不重要？想想看你在蓋房子

完整的功能（先上線）

最擅長的技術？最新的技術？都不重要（先能用）
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要學什麼？
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1. 觀察前沿

追蹤最新的 AI 發展

判斷什麼會留下來、其他人有沒有跟進這個趨勢
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2. 保持冷靜

不要 FOMO

不要追每一個新工具

專注在能解決問題的
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論為什麼 Claude 依然是最好用的開發模型

（現場討論）
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3. 用數據說話

不要用感覺判斷

網路上有統計分析你可以參考

新工具真正有多少人在用？他們是解決什麼問題？
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4. 打造你自己的工程環境

建立、迭代給 AI 用的規則

重複利用的提示詞
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不學什麼？

現在模型做不好，但以後會做好的事。
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Questions so far?
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我的一些原則
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我的開發 SOP

也是大多數開發者的流程
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流程圖（盡量自動化）

RESEARCH
    ↓
  PLAN
    ↓
  BUILD ←──────────────────┐
    ↓                      │
  TEST                     │
    ↓                      │
 REVIEW                    │
    ↓                      │
REFACTOR / CLEANUP         │
    ↓                      │
 COMMIT                    │
    ↓                      │
  還有嗎？ ──── 有 ────────┘
    │
   沒有
    ↓
  SHIP 90



RESEARCH

先搞清楚要做什麼

找現有的解法、開源程式

看別人怎麼做的
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PLAN

讓 AI 先規劃

用 Plan Mode

沒想好怎麼辦？先 SHIP
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BUILD

兩種方式：

1. 複製現成的 — 找別人做過的、改成你要的

2. 直接 ship — 先做出來、看結果再調整
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TEST：用 Docker Build 測試

不要用 Hot Reload 做 QA

docker build -t myapp .
docker run -p 3000:3000 myapp

為什麼？

環境跟 Production 一樣

不會有「我電腦可以跑」的問題

AI 改的東西直接在真實環境測
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REVIEW → REFACTOR → CLEANUP

每 1-2 個 feature 就要：

review  — 檢查品質

refactor  — 重構結構

cleanup  — 清理垃圾

simplify  — 簡化複雜度

不要累積技術債

就跟蓋房子一樣
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COMMIT：我的 Git 工作流

簡單就好：

1. 用 VS Code 產生 commit message — AI 幫你寫

2. 只在穩定時 commit — 確定可以跑再 commit

3. 出問題就 revert — 隨時可以回到上一個穩定版本

Commit = 存檔點
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LOOP

Feature 1 → Review → Commit
Feature 2 → Review → Commit
         ↓
    Refactor / Cleanup
         ↓
Feature 3 → Review → Commit
Feature 4 → Review → Commit
         ↓
    Refactor / Cleanup
         ↓
       ...
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遇到 Bug 解不掉？

1. 換 model 重試

2. 給更多 context

3. 拆成更小的問題

4. 問不同的問題
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Debugging with AI：詳細技巧
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怎麼貼錯誤訊息

Bad：

幫我修這個 bug

Good：

我在執行 npm run dev 時遇到這個錯誤：

[貼完整錯誤訊息]

相關程式碼在 src/app/page.tsx
我剛剛改了 XXX
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給 Context 的技巧

1. 貼完整錯誤 — 不要只貼最後一行

2. 說明你做了什麼 — 「我剛剛加了 XXX」

3. 說明預期行為 — 「我期望它應該 XXX」

4. 說明實際行為 — 「但它卻 XXX」
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什麼時候該放棄問 AI？

同一個問題問了 3 次以上沒解決

AI 開始重複同樣的建議

AI 給的答案越來越離譜

這時候：

1. Google 搜尋錯誤訊息

2. 看 GitHub Issues

3. 問 Stack Overflow

4. 問真人
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Debug 的心法

AI 不是萬能的

有時候傳統方法更快：

console.log  大法

二分法找問題

看官方文件

讀 source code

目標是解決問題，不是證明 AI 有多強
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關鍵原則
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瓶頸永遠要是 AI 生成程式的時間，不是你

你不應該在等 AI

AI 應該一直在跑

同時開多個任務
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怎麼做？

1. 多開 Terminal — 同一個 repo，不同 feature

2. 多開 Repo — 兩個資料夾，用 Git + GitHub 管理合併

3. Cloud Background Agents — Claude Code / Codex，開 PR 再 merge

4. Plan Mode — 同時開發同模組時先規劃

你是調度員，不是工人
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請盡量把所有東西放同一個專案

讓 AI 有足夠 context

不要分太多 repo
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請利用開源程式庫、文件、範例直接讓他參考

現在大多數文件都可以讓你直接複製成提示詞

很多很複雜的東西都有人做過了
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請讓 AI 知道你的規範

建立 CLAUDE.md

定義專案規範、常見錯誤（當每次遇到都要記錄）

建立經常使用的提示詞，變成 Commands / Skills
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根據結果調整 CLAUDE.md

AI 犯錯 → 更新 CLAUDE.md → AI 學會

# CLAUDE.md

## 專案規範
- 使用 TypeScript
- 用 shadcn/ui 元件
- 不要用 any

## 常見錯誤
- 不要直接 import from @radix-ui
- 記得加 "use client"

## 流程
- 每次完成一個 feature 要 test、review、refactor、cleanup
- 使用 npm run build、npm run lint、npm run test 自動檢查程式碼並修復問題
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寫 Commands / Skills 加速

重複的 workflow → 寫成 command

# .claude/commands/review.md

請檢查最近修改的檔案：
1. 程式碼品質
2. 潛在 bug
3. 效能問題
4. 安全漏洞
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把東西變成可擴展的

不要用時間換錢

建立可複用的流程

自動化重複的工作

就跟以前你在打造一個團隊一樣，你會制定規則、寫文件，現在是打造你的 AI 團隊
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接下來：Live Demo

Live Demo

數位勞報單系統

從 0 到上線
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先想一下

如果你要做一個「數位勞報單系統」

你會怎麼開始？
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問：你會先做什麼？

A. 直接開始寫 code

B. 先畫 UI 設計稿

C. 先規劃資料結構

D. 先問 AI 怎麼做

E. 先 Google 看別人怎麼做

115



我的答案

E → D → C → 開始寫

1. 先看別人怎麼做（Research）

2. 問 AI 幫我規劃（Plan）

3. 確認資料結構

4. 開始寫（Build）
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我們要做什麼

現場發想、現場設計、現場開發

你會看到我真實的開發流程
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技術棧

Next.js — React 框架

shadcn/ui — UI 元件庫

Tailwind CSS — 樣式

Supabase — 後端 + 資料庫

Docker — 容器化

Vercel — 部署
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工具

Claude Code — AI 開發助手

VS Code — 編輯器

Warp — Terminal

Raycast — 快速啟動

Git + GitHub — 版本控制
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Claude Code 功能
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CLAUDE.md

專案的「憲法」

# CLAUDE.md

## 專案資訊
這是一個數位勞報單系統...

## 技術棧
- Next.js 14 + App Router
- shadcn/ui + Tailwind

## 開發規範
- 使用 TypeScript strict mode
- 元件放在 components/
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Commands

自訂指令，放在 .claude/commands/

# .claude/commands/new-feature.md

請幫我開發新功能：$ARGUMENTS

1. 先分析需求
2. 設計資料結構
3. 建立 UI 元件
4. 實作邏輯
5. 測試

使用： /project:new-feature 使用者登入
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Plan Mode

大任務先規劃

> /plan 實作勞報單提交流程

Claude 會：
1. 分析需求
2. 列出步驟
3. 等你確認
4. 再開始執行
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Skills

自動套用的工作流程

# .claude/skills/SKILL.md

---
description: 當使用者提到 API 時自動套用
---

API 開發規範：
- 使用 Route Handlers
- 回傳統一格式
- 錯誤處理...
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MCP (Model Context Protocol)

擴充 Claude 的能力

shadcn MCP — 查詢元件、取得範例

Playwright MCP — 瀏覽器自動化

Supabase MCP — 資料庫操作
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Hooks

事件驅動自動化

{
  "hooks": {
    "PostToolUse": [{
      "matcher": "Write|Edit",
      "hooks": [{ "command": "prettier --write $FILE" }]
    }]
  }
}

PostToolUse — 寫檔後自動格式化

SessionStart — 注入 git status

PermissionRequest — 自動批准測試

126



Subagents

Claude Code 內建的專業 Agent：

review  — 程式碼審查

refactor  — 重構

cleanup  — 清理

simplify  — 簡化

debug  — 除錯
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問：Commands vs Skills vs Hooks vs Subagents
vs MCP?
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答案

類型 觸發方式 用途

Commands /project:xxx  手動 重複的 workflow

Skills AI 自動偵測 情境規則

Hooks 系統事件自動 事件驅動自動化

Subagents AI 自動委派 專業任務

MCP AI 自己呼叫 外部工具連接
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Subagents 做什麼？

review — 檢查當前改動的品質

refactor — 重構程式碼結構

cleanup — 清除死碼、整合重複邏輯

simplify — 簡化複雜度
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Subagents 的原則

遵循 KISS、SOLID、CLEAN 原則

絕對不要 Over-engineering

目標：

長期可維護性（像資深工程師思考）

更短的 Context → AI 表現更好

乾淨的 Codebase → Debug 更容易
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開發流程示範
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Step 1: Research

勞報單是什麼？

有哪些欄位？

參考現有系統
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Step 2: Plan

讓 Claude 規劃

確認功能範圍

設計資料結構
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Step 3: Build

建立專案

開發功能

邊做邊學
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Step 4: Review & Refactor

每做完一個功能：

/review   # 檢查品質
/refactor # 重構
/cleanup  # 清理
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Step 5: Ship

部署到 Vercel

連接 Supabase

上線！
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開始 Live Coding

請看螢幕

Product Mindset

怎麼做出真正有人用的產品
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問：你做過產品嗎？經驗是什麼？
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做產品 ≠ 寫程式

技術只是手段

產品才是目的

你的目標是解決問題，不是寫 code
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Ship First
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問：你通常花多久時間規劃？
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不管如何，先上線

不要想太多

不要規劃太久

先做出來再說

完美是好的敵人
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邊做邊想

想破頭想不到？

先讓 AI 寫點東西

看到成果會有新想法

動手才是最好的思考方式
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卡住了？

1. 先做其他專案

2. 一次開多個

3. 讓 AI 幫你打工

4. 你是工頭

不要停下來
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Talk to Users
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問：你怎麼知道使用者要什麼？
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使用者說什麼？

不要假設需求

直接問使用者

觀察使用者行為

不要在房間裡想像
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快速驗證

1. 做最小版本（MVP）

2. 給使用者試

3. 收集回饋

4. 調整方向

這個循環越快越好
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Less is More
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問：你的產品有多少功能？
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少即是多

功能越少越好

只做核心的

其他都不要

一個功能做到極致 > 十個普通功能
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為什麼？

開發時間少

維護成本低

使用者更容易懂

更快上線

更容易測試假設
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Easy ≠ Simple

Easy（容易） — 用起來不費力

Simple（簡單） — 沒有複雜的糾結
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例子

Easy Simple

用現成框架 只用需要的功能

複製貼上 理解後精簡

加更多套件 用最少依賴

追求 Simple，不只是 Easy

Easy 會堆積複雜度

Simple 才能長期維護
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Design is How It Works

Steve Jobs
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設計 ≠ 好看

設計 = 好用

使用者能完成任務嗎？

過程順暢嗎？

會困惑嗎？
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好的設計

不需要說明書

一看就知道怎麼用

符合直覺

如果需要解釋，就是設計有問題

158



產品思考框架
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問自己這些問題

1. 誰是使用者？ — 越具體越好

2. 他們的痛點是什麼？ — 真的痛嗎？

3. 我的解法是什麼？ — 最簡單的解法

4. 為什麼他們要用我的？ — 差異化
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驗證想法

1. 問題存在嗎？ — 真的有人有這個痛點？

2. 解法可行嗎？ — 技術上做得到？

3. 使用者會用嗎？ — 有人願意付錢/時間？

先驗證再開發
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Questions so far?
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下午實作
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旅遊規劃網站

你們來發想！
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討論方向

1. 目標使用者 — 誰會用這個網站？

2. 核心功能 — 最重要的 1-2 個功能

3. 差異化 — 跟別人有什麼不同？

（15 分鐘討論）
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第一階段：靜態網站

展示旅遊規劃

行程一覽

漂亮的 UI

目標：讓人看到就想用
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第二階段：加後端

可以新增行程

可以修改內容

使用者登入

資料存 Supabase

目標：變成真正可用的工具
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技術棧

Next.js + shadcn/ui + Tailwind
            +
        Supabase
            +
         Docker

跟上午 Demo 一樣
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開始討論：你們想做什麼？

Build Time

實作：旅遊規劃網站
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目標

14:00 - 15:30（1.5 小時）

做出一個可以展示的旅遊規劃網站
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記住上午學的

1. RESEARCH — 先看別人怎麼做

2. PLAN — 讓 AI 規劃

3. BUILD — 複製現成的 / 直接 ship

4. REVIEW — 每個 feature 都要檢查

5. SHIP — 上線！
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第一階段目標（必做）

靜態網站：

首頁

行程列表

行程詳情頁面

好看的 UI

時間：約 45 分鐘

172



第二階段目標（加分）

加後端：

使用者登入

新增/編輯行程

資料存 Supabase

時間：約 45 分鐘
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建立專案

# 建立 Next.js 專案
npx create-next-app@latest travel-planner

# 選項：TypeScript、ESLint、Tailwind、App Router

# 進入專案
cd travel-planner

# 初始化 shadcn
npx shadcn@latest init
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加入常用元件

npx shadcn@latest add button card input form
npx shadcn@latest add navigation-menu avatar
npx shadcn@latest add dialog sheet

或讓 Claude 幫你加
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啟動 Claude Code

# 進入專案目錄
cd travel-planner

# 啟動 Claude Code
claude
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建議的第一個 Prompt

我要做一個旅遊規劃網站。

功能：
1. 首頁展示旅行概覽（目的地、日期、人數）
2. 行程列表（每天的安排）
3. 每個行程的詳細資訊（時間、地點、備註）

技術：Next.js 15 + shadcn/ui + Tailwind

請先：
1. 建立 CLAUDE.md
2. 規劃資料結構
3. 列出要建立的檔案

確認後再開始實作。
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開發流程提醒

寫完一個功能
      ↓
   /review
      ↓
   修正問題
      ↓
   git commit
      ↓
  下一個功能

不要一次寫太多再 review
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善用上午學的指令

/review    # 檢查品質
/refactor  # 重構
/cleanup   # 清理
/simplify  # 簡化
/debug     # 除錯
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善用 MCP

# 查 shadcn 元件
"幫我找適合的 shadcn 元件"

# 查最新文件（如果有裝 context7）
"use context7 - Next.js 15 的 App Router 怎麼用"
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遇到問題？

1. 換個問法 — 重新描述問題

2. 給更多 context — 貼錯誤訊息、截圖

3. 換 model — 試試 GPT 或 Gemini

4. 問 Google — 有時候傳統方法更快

5. 問我 — 舉手！
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常見問題

Q: shadcn 元件樣式怪怪的

A: 檢查 globals.css  有沒有 Tailwind directives

Q: "use client" 錯誤

A: 有用到 hooks 或事件的元件要加 "use client"

Q: 部署失敗

A: 先 npm run build  本地測試
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Supabase 設定（第二階段）

# 本地啟動（需要 Docker）
npx supabase init
npx supabase start

或直接用雲端版：https://supabase.com

183

https://supabase.com/


Supabase 基本表格

-- 行程表
create table trips (
  id uuid primary key default gen_random_uuid(),
  title text not null,
  destination text,
  start_date date,
  end_date date,
  created_at timestamp default now()
);

-- 活動表
create table activities (
  id uuid primary key default gen_random_uuid(),
  trip_id uuid references trips(id),
  day int,
  time text,
  title text,
  description text
); 184



部署到 Vercel

# 方法 1：CLI
npm i -g vercel
vercel

# 方法 2：連 GitHub
# 推到 GitHub 後在 Vercel 網站 import
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時間分配建議

時間 任務

14:00-14:10 建立專案、寫 CLAUDE.md

14:10-14:20 規劃、設計資料結構

14:20-14:50 開發核心頁面

14:50-15:10 完善 UI、review、refactor

15:10-15:25 加後端（optional）或 polish

15:25-15:30 準備分享
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分工建議（如果組隊）

一個人 — 全部自己來，專注核心功能

兩個人 — 一人前端、一人後端

三個人 — 前端 / 後端 / 設計+測試
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開始吧！

有問題隨時問

15:30 分享成果

記得：Ship first, perfect later

分享時間

15:30 - 16:30
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分享格式

每人/組 5-8 分鐘：

1. 展示成果 — 實際 demo

2. 遇到的問題 — 卡在哪裡？

3. 怎麼解決的 — 用什麼方法？

4. 學到什麼 — 最大的收穫
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評分標準

沒有評分

純粹分享，沒有競爭
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重點是

你嘗試了

你學到了

你完成了（多少都算）

過程比結果重要
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開始分享
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Feedback

16:30 - 17:00
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今天的回顧

1. AI 開發工具的演進（2024 → 2027）

2. AI 的瓶頸與限制

3. Agents 與 Context Engineering

4. Vibe Coding vs Vibe Engineering

5. 開發 SOP 與原則

6. Claude Code 實戰

7. Product Mindset

8. 親手實作
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核心觀念複習

軟體開發是工程問題 — 像蓋房子

你是工頭，AI 是工人

瓶頸要是 AI，不是你

Ship first, perfect later

模型 >>> 工具
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你學到了什麼？

請分享：

最有用的一個觀念

最想回去試的一件事

還有什麼想學的

196



給我的 Feedback

哪裡講得好？

哪裡可以改進？

什麼沒講到但你想知道？

時間安排 OK 嗎？
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Q&A

17:00 - 18:00
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問任何問題

AI 工具相關

開發流程

產品思維

職涯建議

接案經驗

創業經驗

其他任何事
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資源整理
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AI 開發工具

工具 連結

Claude Code https://claude.ai/code

Cursor https://cursor.sh

GitHub Copilot https://github.com/features/copilot

Codex https://openai.com/codex
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前端框架 & 元件庫

資源 連結

Next.js https://nextjs.org

shadcn/ui https://ui.shadcn.com

Tailwind CSS https://tailwindcss.com

Radix UI https://www.radix-ui.com
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後端 & 部署

資源 連結

Supabase https://supabase.com

Vercel https://vercel.com

Railway https://railway.app

Cloudflare https://cloudflare.com
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MCP Servers

MCP 用途

Context7 即時文件

shadcn 元件查詢

Next.js DevTools Next.js 開發

Playwright 瀏覽器自動化

Supabase 資料庫操作
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學習資源

資源 連結

Claude Code Docs https://code.claude.com/docs

Anthropic Engineering Blog https://anthropic.com/engineering

Prompt Engineering Guide https://promptingguide.ai

MCP Servers Directory https://mcp.so
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Claude Code 進階功能

功能 說明

Hooks 事件驅動自動化（格式化、批准、注入）

LSP 語言伺服器整合（900x 效能提升）

Plugins 打包分享 Commands + Agents + Hooks
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Claude Code Plugins

官方目錄

/plugin marketplace add anthropics/claude-code

社群目錄

claudebase/marketplace

boostvolt/claude-code-lsps （LSP 支援）

claude-plugins.dev
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回去可以做的事

1. 把今天的專案繼續完成

2. 建立自己的 CLAUDE.md 模板

3. 寫幾個常用的 Commands

4. 設定 Hooks 自動格式化

5. 裝幾個 MCP servers 試試

6. 嘗試 LSP 提升程式碼理解
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建立你的 AI 工程環境

1. CLAUDE.md — 定義專案規範

2. Commands — 重複的 workflow

3. Skills — 自動套用的規則

4. Hooks — 事件驅動自動化

5. MCP — 擴充工具能力

這是你的競爭優勢
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保持聯繫

有問題隨時問

Email: ym911216@gmail.com
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謝謝大家

祝開發順利！

記得：你是工頭，AI 是工人
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